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J. Phys. A: Math. Gen. 14 (1981) 921-929. Printed in Great Britain 

Gauge covariance and. the gauge technique? 

R Delbourgo, B W Keck and C N Parker 
Department of Physics, University of Tasmania, Hobart, Tasmania, Australia 

Received 2 September 1980 

Abstract. It is established that the spectral ansufze for longitudinal Green functions in first 
approximation of the gauge technique fulfil the covariance properties expected on general 
grounds in ultraviolet and infrared regimes, but possibly not at intermediate momenta. 
Explicit calculations in quantum electrodynamics confirm these statements. 

1. Introduction 

The gauge technique (Salam 1963, Delbourgo 1979) is a non-perturbative method of 
solving the coupled Green function equations of a gauge field theory, guaranteeing 
from the very beginning that the Ward identities are automatically respected. It has 
recently been pointed out by Slim (1980) that satisfaction of the Ward identities is a 
weaker constraint than requiring fulfilment of the entire gauge covariance relations, 
and he purports to demonstrate an inconsistency between the spectral functions derived 
in first gauge approximation (Delbourgo and West 1977a) by the technique and their 
complete gauge transformation properties (Zumino 1960) expected on general 
grounds. This demonstration is stated by Slim to be already apparent in order e’, a 
puzzling comment in view of the fact that the spectral functions are known to be exact at 
this order if nothing else. Equally puzzling is the fact that the counterpart scalar 
problem (Delbourgo and Keck 1980) seems to work out consistently for all momenta. 
We therefore thought it worthwhile to check whether this discrepancy really exists in 
the context of spinor electrodynamics. Contrary to Slim, we find that the covariance 
property is properly satisfied to order e* and that it also holds at infrared and ultraviolet 
momentum limits. However, Slim’s general conclusion is perfectly right in as much as 
there does occur a conflict between full gauge covariance and the specific spectral 
ansutze (for longitudinal amplitudes) at subasymptotic regimes. Though this is some- 
what disappointing-for it teaches us that fulfilling the Ward identities is not everything 
in gauge models-it is not especially tragic either; for one thing a great deal of 
information is contained in the asymptotic momentum limits, where the technique does 
its job satisfactorily (Johnson and Zumino 1959, Baker et a1 1964), and for another the 
importance of transverse corrections$ to the amplitudes in intermediate regimes (which 
presumably patch up the gauge transformation properties) has always been recognised. 

t Supported in part by the ARGC under grant no. B77/15249. 
$ These give contributions of order e4 at least to the spectral function and can be taken into account by 
proceeding to higher orders of gauge approximation, i.e. by solving the higher-point Green function identities 
with the inclusion of transverse components in lower point functions. 

0305-4470/81/040921+09$01.50 @ 1981 The Institute of Physics 921 



922 R Delbourgo, B W Keck and (3 N Parker 

In the next section we have distilled the essence of the possible mismatch between 
the gauge technique ansatze and the gauge covariance properties without regard to 
detailed calculations. There we prove that the clash cannot arise in the various 
asymptotic limits but only for subasymptotic momenta. In the following section we 
analyse the Mellin transformed covariance relations (Slim 1980) in quantum elec- 
trodynamics to see what is implied for the asymptotic domain. Because Slim points out 
the discrepancy with reference to a particular solution of the technique equations for 
the spectral functions, we have re-examined these equations in § 4 and extracted their 
solutions by a completely different route from Slim. Our ultraviolet behaviours do not 
quite agree with Slim’s; this may be due to his particular choice of Meijer function or for 
some other reason. But in any event we are able to exhibit a conflict between the Mellin 
transform of the spectral equations and the relations found in § 3; the conflict dissipates 
at various limits, in conformity with the general arguments of 0 2. 

2. Gauge covariance relations 

In  electrodynamics, under a gauge change of photon propagator, 

D F L y ( z  1 + D,, (2  1 - 8, a,M(z),  (1) 
the transformation properties of the Green functions were systematically established 
long ago by Zumino (1960).  The first few, which chiefly concern us, read 

(2a 1 ~ ( x )  + exp(ie ’ ~ ( x  ) ) ~ ( x )  

(STSD).(x, y ;  z)+exp(ie2M(x -y))(STSD).(x ,  y ;  z )  

+ieS(x - y ) d : [ M ( x - z ) - M ( y  -211 

where S is the electron propagator and r is the proper three-point vertex, both 
renormalised. Letting SX stand for the change in the quantity X for infinitesimal M in 
( l ) ,  the covariance relations become 

SS(X) = ie’M(x)S(x) ( 3 a )  

s ( s r s D ) . ( x ,  Y ;  2 )  

=ie2M(x - y ) ( S r S D ) , ( x ,  y ;  z)+ieS(x-y)d:[M(x - 2 ) - M ( y  -2)l .  ( 3 b )  

In the gauge technique one works with the photon amputated functions STS and in 
terms of these the covariance property is transcribed into 

s ( s r , s ) (x ,  y ;  z )  = ie’M(x - y ) ( s r A s ) ( x ,  y ;  2 ) .  

a:(sr,s)(x, y ; Z )  = ie[a4(z - Y ) S ( X  - 2 )  - s4(x - Z ) S ( Z  - y ) ]  

( 3 c )  

Of course there is also the Ward-Takahashi identity 

(4) 
valid in all gauges. The Schwinger-Dyson equation too is a gauge-covariant dynamical 
statement. 

The gauge technique hinges upon finding ‘solutions’ of gauge identities such as (4); 
this necessarily only provides a longitudinal solution, since transverse amplitudes 
(divergenceless at the photon legs) are missed out. The transverse components 
naturally come in via the dynamical equations and they also enter into the covariance 
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properties (3) expected in general. Now the basic ansutze for the longitudinal ampli- 
tudes are spectral weightings over Born graphs: 

Here S(xl W )  stands for the free spinor propagator corresponding to a mass W fermion. 
Identities (4) and higher are automatically satisfied. However, Slim has rightly ques- 
tioned if this is sufficient to guarantee the full covariance properties (3). We shall now 
show that it is, but only in asymptotic momentum regimes. 

Turning Slim’s question around, it is incumbent upon us to demonstrate that the 
longitudinal ansutze ( 5 )  alone satisfy (3c) given (3a);  or equivalently that the covari- 
ance properties of longitudinal and transverse amplitudes are independent. In 
momentum space, since (3a) and (5a)  together mean that 

and because 

( S K S ) ( p , p - k ) =  dWS(plW)yAS(p-ktW)p(W), ( 7 )  

where S ( p l  W )  = ( y  p - W)-’, we have to investigate under what conditions 

can equal 

in other words, in what circumstances do the transverse vertices decouple? 

(6), one immediately recognises 
It is easy to discern what is happening in the infrared limit, k + 0 in ( 7 ) .  For, using 

estabhhirzggauge covariance in the infrared. More generally, if k is small in relation t o p  
the covariance property is fulfilled; this then includes the case p + CO, the ultraviolet 
spinor limit. Finally we can contemplate taking k + CO with p fixed. Since equation (7) 
tends to 



924 R Delbourgo, B W Keck and C N Parker 

So once again, this time in the photon ultraviolet limit, gauge covariance holds good. Our 
deductions break down however for p comparable to k, namely for intermediate 
momenta, as there is no obvious reason why, given ( 3 a ) ,  the ansatz (5b) or (7) will by 
itself transform according to (3c ) .  Indeed, for spinor electrodynamics as Slim has 
pointed out, and as we shall presently verify, it does not. Nevertheless it is worth 
bearing in mind that the ansiitze are fully satisfactory? at asymptopia as well as to order 
e2 (where p is exact), which is just the regime where most applications to date have been 
made. 

3. Mellin transforms 

Hereafter we shall stick to gauge transformations associated with M(q) = a / q 4 ,  cor- 
responding to + 

with E = e2/16r2 .  (8) 
2 2 -as exp(ie2M(x))+ ( m  r ) 

The transformation property of the spectral function p (  W ;  a )  was described in an 
earlier paper (Delbourgo and Keck 1980) and is reproduced below. Let 

(1 - x f / x ) - l + Z a E  

2 2 a ~ r ( 2 ~ E )  
F ( 2  + U & ,  U &  ; 2U& ; 1 -x'/x)Cq(x': 0) ( l o a )  CT~(X; U )  = dx' 2-a~ LX x 

1 (1 -x'/x)-1+2ae 
F(l + U & ,  U E ;  ~ U E ;  1 -x ' / x )o~(x ' ;  0) (10b) 2 2 a E r ( 2 ~ ~ )  

r ~ 2 ( x ;  U )  = dx' Jlx 
gives the relation between the spectral functions in gauge a with those in Landau gauge 
a = O .  

t It is perhaps amusing to note that certain combinations of longitudinal amplitudes still transform correctly. 
Thus 

(ST"S)(p, p - k )  - ( S T " S ) ( p  + k, P )  

satisfies the gauge covariance relation to order k-this is verified by taking a second derivative of (6) with 
respect to p and contracting once with k .  Similarly 

( S T " S ) ( p , p - k ) - 4 ( S T " S ) ( p + S k , p - I k ) + ( S T " S ) ( p + k ,  p )  

is gauge covariant in order k2, etc. 
$ We have normalised our propagator S ( p )  at p = 0 differently from Slim. It makes no essential difference to 
the argument. Slim's U factors merely disappear. 
5 The identity F(a ,  6 ;  c ;  1 - z-') = zaF(a,  c - b ;  c ;  1 - z)  has been applied to change the argument of the 
hypergeometric function in Delbourgo and Keck (1980). 



Gauge covariance and gauge technique 925 

Next take the Mellin transforms 

s ; ( Y )  dx x-'v;(x). I 
Since the integration range in (10)  is 1 < x'< x < CO one can rearrange the order of 
integration from I," dx Jt dx' to JT dx' jxm dx and carry out the integrals with the aid of 

1 Io dt  ( 1  - t)c-ltc'-c-1F(a, b, c ;  1 - t )  = r(c)r(c '-  C ) r ( c f  - a - b ) / r ( c '  - a ) r ( c '  - b )  

to obtain 

An equivalent restatement is the pair of recurrence relations? 

The inverse transform, ~ ( x )  = ( 2 ~ i ) - '  IC dy s(y)xY-l,  informs us that if a ( x )  has the 
ultraviolet behaviour 

a ( x )  -xP(ln x)' asx+co,  

in Landau gauge, then s ( y ;  0) has a rightmost branch point nearest the contour C at 
y = 1 + p  with a branch cut associated with the function ( y  - p  - l)-'-'. (In particular, 
for y integral, y = 1 + p  becomes a pole of order y + 1.) Relations (12)  show that in a 
different gauge this singularity of the Mellin transform is shifted to p + 1 +a&,  which 
remains distinct from possible poles at y = a& + 1 - n, assuming /3 is non-integral. At 
the other extreme, if Landau's a ( x )  behaves as (x - 1)* near the endpoint, we deduce 
that s ( y ;  0) - y-'-" as y +CO is the infrared behaviour; and consequently s ( y  ; a )  - 

in any gauge. In short, infrared is connected with y + 00 and ultraviolet is Y 
governed by the y singularity nearest the left of the Mellin transform contour. 

-1-a-Zas 

4. The gauge technique 

Making the ansatz ( 7 )  in the Dyson equation, we arrive at the following pair of integral 
equations for the spectral functions (Delbourgo and West 1977a), 

t To translate these recurrences into Slim's notation, put y = z + 2 ,  replace s ( y  - 1) by @ ( z  - 1) and change E 

into A .  



926 R Delbourgo, B W Keck and C N Parker 

for all a. In deriving equations (14) it is important to remember that transverse vertices 
which are crucial for renormalising C ( p ,  p ) g ( p )  in the total equation (Delbourgo 1979) 
have been dropped. It is relatively simple to solve equation (14) in the Landau gauge 
a = 0, in the sense that well-known 2F1 transcendental functions ensue (Delbourgo and 
West 1977b). The problem is much harder for a f 0, but needs to be tackled if one is 
interested in checking explicitly for gauge covariance. We shall follow a totally different 
procedure from Slim in solving for the cr,, 

Differentiate equations (14) twice with respect to x (D = d/dx).  Then 

D [ x D a l + ( l  - -E + ~ E ) ( T ~ ] - u E c T ~ / x  =D2a2 (15a) 

D[X2D(rl - u ~ ) + x ( u  - ~ ) E C Q ] = U E ~ ~ .  (15h) 

Equation (15a) allows us to eliminate D2a2 from (15b) and obtain a linear reiation 
between u2 and Da2. Differentiating (15b) again and again, we end up with a 
fourth-order equation in ul, 

D 3 ( ~ 2 D a l ) - D ’ ( x 2 D 2 ~ 2 ) - D [ ~ ( 2 + 3 ~  - U E ) D ~ V ~ ] - ( ~ - U E  +6&)D202 = 0 

because D2v2 can be expressed as a second-order derivative on u1 by ( 1 5 ~ ) .  We can 
cast this into more conventional hypergeometric form by using the differential operator 
13 = x d/dx in place of D. After a little work one obtains 

Similarly one finds that v 2 / x  obeys the equation 

{e% + i ) ’ -x[e++ (3 - a E  + 3 4 e  + 2 - 2 a ~  + 3 4  

x [e2+ (3 - U &  + 3 4 e  + 2  - UE +~E]}(+z/x  = 0. 

Now the hypergeometric function 

formally satisfies the differential equation 

[ e ( e  +c l  - i ) ( e  + c2- l)(e + c 3  - 1) - X ( O  + al)(e  +az) (@ +a3)@ +a4)]F = 0. 

Thus we can recognise u1 as a 4F3 function possessing the parameters 

c1= 0, c2= 1, c3 = 2, 
2 2 1/2 =$(l- U E  + 3 ~ )  ++[1+ 2 a ~  + 6 ~  + ( a  - 3) E ] 

2 ~ 3 = + ( 3 - ~ ~ + 3 ~ ) r t [ l - 2 ~ ~ - 6 ~ + ( ~ - 3 )  2 E 2 ] 1 / 2  . 
4 

Since the series (17a) is strictly undefined for c1= 0 we have to reinterpret the function 
by a renormalisation of l/r(c1), just as one does in the 2F1 case. This yields the 
hypergeometric functions of type 

Ple4F3(Ul+ 1, U 2 - t  1, U 3 +  1, 0-44- 1; 2 ,2 ,  3; X) 

PZe4F3(al+1, a2+1-, a3, a4; 1, 2, 2; x) 
(19a) 
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or, by examination of the associated equations, Meijer functions of type 

) - a l ,  -a2,  -a3, - a 4  

- a l ,  -a2 ,  1-a3, 1-a4 
0,0, -1, -1 p2 GF((-.li"+"xl (19b) 

Of course that is only the character of the function: there are several linearly indepen- 
dent solutions of the equation and it is essential to determine the right combination 
which satisfies the original integral equations (14). The correct solution needs to 
reproduce first-order perturbation theory, and when a = 0 it must reduce to the known 
answer (Delbourgo and West 1977b) for the Landau gauge; namely, for crl say, 
( X - ~ ) - ' - ~ " ~ F ~ ( - ~ E ,  - 3 ~ ;  - 6 ~ ;  1-x),  not the solution ~ F 1 ( 1 + 3 ~ ,  1 + 3 ~ ;  1 ; x ) .  

By contrast with the normal 2Fl or G22, there is a dearth of literature on the 
fundamental system of solutions for 4F3 or G44 in the neighbourhood of x = 1; the only 
relevant mathematical reference we have been able to trace which treats this point in 
any detail is an article by Norlund (1955). Abstracting his analysis to our circumstances, 
we are interested in the solution which behaves as 

(x - 1)-1+2(a-3)~  = (x - 1 ) Z c - L a  

near x = 1, and are led to picking Norlund's function 5. For p1 this is 

It is not clear to us that equation (20) is precisely the same as Slim's solution G::. Both 
our answer and Slim's certainly reduce to the correct Landau gauge solutions above, but 
they seem to disagree in the ultraviolet limit. For us, just as for Slim, 

a s x + 1 ;  (21) 

U1 - X-a*, cr2-X1-a3 asx+co.  (22) 

-1+2(a-3)~ 
crl and cr2 + (x - 1) 

but unlike Slim, we contend that ultraviolet self-consistency of (14) is achieved by 

Note that when the gauge parameter a + 0-,  the next to leading behaviour in crl, x - ~ ~ ,  
competes with (22) to provide the ultraviolet behaviour 

- 3 E  
crl x), ( 7 2 - x  , 

expected in the Landau gauge-which then leads one to 

S ( p )  - (yp)-' + (3"'( -p2/m2)--1-38, (23) 

in perfect agreement with the self-consistent asymptotic behaviour found by Baker et a1 
(1964). The absence of a logarithm in Slim's quoted behaviour? may be due to his 
keeping away from a = 0. However it ought to be retrieved when a = 0 since one is then 
dealing with a degenerate situation. 

Whatever the rights and wrongs of the proposed solutions, one may readily uncover 
an inconsistency between equations (10) and (14). Take the Mellin transform of (14). 

t It also makes us slightly suspicious of his Gj: choice, although we cannot be categorical about this. To our 
mind G:: looks a more plausible solution for p1 and p2. 
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This gives the gauge technique recurrences 

s 2 ( 4  1 + E ("-"I = S l ( Y )  
Y - 1  Y 

for all a. More particularly the ratios 

allow us to evaluate 

S l ( Y  - a& ; 0) 
sl(y -a& -1; 0 )  y - a s - 1  

S Z ( Y  -a& ; 0) =(l+ 3 E  )(1+ 
s 2 ( y  - a s  - 1; 0 )  y - a & - l  y - a & - 2  

When substituted back into the covariance recurrences (13 )  one deduces 

- s l ( Y ;  a )  = (1 -:)( 1 - 3 )  (1 + y - a & - 1  

s 2 ( y ;  a )  = (1 -?)( 1 -%)( 1 + 3 E  )(1+ 

S l ( Y  - 1; a )  

S 2 ( Y  - 1; a )  y - 2  y - a & - 2  y - a s - 1  

which can be seen to conflict with (25) .  Observe though that the mismatch disappears to 
order F and also for large y (corresponding to the infrared limit), in support of the 
arguments of $ 2. Turning to the ultraviolet limit obtained by the technique, we know 
from (23 )  that s l ( y ;  0 )  has a rightmost double pole at y = - 3 ~  and s 2 ( y ;  0 )  has a 
rightmost single pole at 1 - 3 ~ .  Gauge covariance (12) would then tell us, for general a,  
that s l ( y  ; a )  has a single pole at y = 1 + a s  as well as a double pole at y = (a - 3 ) s ,  while 
s 2 ( y ;  a )  has leading single poles at 1 + ( a  - 3 ) ~  and 1 +a&.  But (25 ) ,  derived without 
reference to gauge covariance, shows that the ratio sl(y + l ) / s l ( y )  has zeros at 

y = l - a l ,  1 - a2, 1 - a3, 1 - a 4  

- 1 + a s  + 3ac2 2 -3.5 + 3 a s 2 ,  - 3 e - 3 a s  , 2 = l + a & - 3 a & ,  

to order E ' ,  

The position of the rightmost pole is thus confirmed to order E ,  but the nearby 
double pole is not found; instead there are two finely separated single poles at a slightly 
different location from ( a  - 3 ) ~ .  Analogous statements apply to v2 (which provides the 
most significant correction to the bare propagator): the two leading poles are not quite 
at 1 + a &  and 1 + ( a - 3 ) ~  buta t  1 - a I = 1 + a &  a n d 2 - a 3 = l - 3 s .  

Summarising, we assert that the gauge technique respects the full gauge covariance 
(not purely the satisfaction of the gauge identities) at asymptotic momenta, but conflicts 
mildly with it at intermediate values of momentum. The blame falls fairly and squarely 
on transverse vertices, and once these are incorporated into the technique by going to 
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higher orders of gauge approximation, the conflict between the two should be resolved. 
In spite of the complaint, we believe that the longitudinal Green functions derived by 
the technique do a useful job of interpolating between infrared (Johnson and Zumino 
1959) and ultraviolet regions (Baker et a1 1964), where their behaviours are eminently 
respectable. 

References 

Baker M, Johnson K and Willey B J 1964 Phys. Rev.  136B 11 11 
Delbourgo R 1979 Nuovo Cim. 49A 484 
Delbourgo R and Keck B W 1980 J. Phys. A :  Math. Gen. 13 701 
Delbourgo R and West P 1977a J.  Phys. A :  Math. Gen. 10 1049 
- 1977b Phys. Lett. 72B 96 
Johnson K and Zumino B 1959 Phys. Rev.  Lett. 3 351 
Norlund N E 1955 Acta Math. 94 289 
Salam A 1963 Phys. Reu. 130 1287 
Slim H 1980 Preprinr University of Groningen 
Zumino B 1960 J.  Math. Phys. 1 1 


